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AN EXPERIMENTAL STUDY OF TURBULENT SKIN FRICTION

REDUCTION IN SUPERSONIC FLOW USING

A MICROBLOWING TECHNIQUE*

Danny P. Hwang+

National Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

Abstract

A new turbulent skin friction reduction technology,

called the microblowing technique, has been tested in

supersonic flow (Mach number of 1.9) on specially

designed porous plates with microholes. The skin friction

was measured directly by a force balance and the boundary

layer development was measured by a total pressure rake

at the tailing edge of a test plate. The free stream Reynolds

number was 1.0(10) 6per meter. The turbulent skin friction

coefficient ratios (C_IC m) of seven porous plates are given

in this report. Test results showed that the microblowing

technique could reduce the turbulent skin friction in

supersonic flow (up to 90 percent below a solid flat plate

value, which was even greater than in subsonic flow).

A area of test plate

C_ total skin friction coefficient, (skin friction

force)/(1/2 p_ u_2A)

C_ total skin friction coefficient of a nonporous

plain flat plate

Cf,,.0 total skin friction coefficient of a porous plate
with no blowing

D diameter of blowing holes, mm

F blowing fraction. (Pt, vt,)/(P= u_)
H shape factor (ratio of displacement thickness

to momentum thickness)

T thickness of a plate

u velocity component parallel to surface, m/sec

v velocity component perpendicular to surface,
m/sec

u free stream velocity, m/sec

v_ blowing air velocity, m/sec
y vertical distance from a surface, cm

p= free stream density

Pb blowing air density

*patent no. 5,803,410
_'Senior member, AIAA

Introduction

One of the challenges associated with the development

of a high-speed civil aircraft is the reduction of high skin

friction. One technique that has received much attention
for subsonic flow is laminar flow control. Its application

in supersonic flow is difficult. Many other skin friction

reduction techniques (summarized in Ref. 1) cannot provide

significant reduction in real world applications.

One proposed solution to skin friction reduction,

blowing (or surface mass injection), has been abandoned

because it had problems with flow separation. Many

researchers during the past 30 years have used the

parameters, 2F/Cfw0 versus C/Cf,vo, for their results and
have shown that blowing could achieve significant skin
friction reduction? -3 However, it was not clear whether

blowing could result in a reduction in skin friction below

a solid flat plate value. As indicated in Ref. 4, the unblown

skin friction coefficients, C_,_,of some porous plates were
more than twice the value of a solid flat plate and it was

impossible to reduce the skin friction of these plates below

that of a solid flat plate.
The microblowing technique (MBT) for reducing

turbulent skin friction was invented in 1994 by the author

and a patent was issued in 1998. 5 In this unique concept,

an extremely small amount of air is blown vertically

through a specially designed porous plate with microholes.

The reduction in the surface roughness and the gradient of

the flow velocity profile on the surface decreases skin
friction.

Several experiments have been completed for subsonic
flow 5-8 and results showed that a turbulent skin friction

reduction of up to 50 to 70 percent below the value of a

solid flat plate was possible for subsonic flow if proper

porous plates were used.

A proof of concept MBT experiment for reducing

skin friction in supersonic flow at a Mach number of 1.9

was conducted in test facility CE229 at the NASA Glenn
Research Center in 1999. Seven test skins (Table 1) were
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selectedfromtheprevioussubsonictests.Theinnerskin
thatwasusedformanysubsonictestswaseliminated.The
preliminaryresultsshowedthattheMBTcouldreduce
skinfrictionupto90percentbelowasolidflatplatevalue
insupersonicflow.

Inthispaper,thedetaileddescriptionoftheexperiment,
theresultsof testdataandthediscussionof thisnew
technologywiIlbegiven.

Skin Tested

Seven test skins (Table l) were selected from the

previous subsonic tests. The inner skin that was used for

many subsonic tests was eliminated because it was believed

that the skin friction reduction was not affected by the

inner skin and also because the pressure loss across the

inner plate could be eliminated. Laser drilled microholes

(0.1651 mm in diameter) are shown in Fig. I and the cross-

section view of 15-degree, slanted laser-drilled holes is

given in Fig. 2. Northrop Grumman GAC1897 has
hourglass-shaped holes with_0-percent porosity based on

an open hole area and only has 4 percent porosity based on

the small neck area as shown in Fig. 3. The schematic

diagram of hole pattern showing staggered holes and

aligned holes is illustrated in Fig. 4.

The size of the test plates is 12.36 by 25.06 cm.

Test Facility

The Advanced Nozzle and Engine Components Test

Facility (CE22) at NASA Glenn 9 was modified for this

experiment. A shock-free converging-diverging supersonic

duct 109.22 cm long is connected to a facility transition

duct with a rectangular cross-section exit of 10.8 by

20.32 cm. The facility provided a stable Mach number

of 1.9 at Reynolds number per meter of 1.0(10). 6 The back

pressure (exit pressure) was maintained as low as possible

to avoid keeping the shock inside the duct for too long,

which would damage the force balance.

Apparal_ _and Instrumentation

The force balance used in previous subsonic

experiments was used for this experiment? Since larger
skin friction and blowing air requirements were expected,

a 4800-gram load cell and a 1500 SLM flow meter were

used. The accuracy of the load cell used in the balance was

+/- 0.25 percent. The balance was placed under the test
section inside a sealed compartment, as shown in Fig. 5.

The leading edge of the test plate is located in a constant
pressure region, 63.5 cm from the transition duct. There

were two total pressure rakes along the center line of the

duct. The measurement plane of rake I was located 3.2 cm

upstream of the leading edge of the test plate while the

measurement plane of rake 2 was 1. I cm upstream of the

trailing edge of the test plate. Rake 2 had a very small

vertical gap (less than 0.2 mm) between the test plate and

the nearest tube. The total pressure rakes were built with

tubing that had an outside diameter of 0.508 mm. Rake 1
was removed after the data was taken to minimize the
interference on the measurement of skin friction. Rake 2

was used to calculate the momentum thickness and the

velocity profiles inside the boundary layer. Facility total

pressure rakes, facility total temperature thermocouples,

and a static pressure at the leading edge of the test plate
were used to measure the tunnel Mach number.

Calibration

An identical load cell was used to calibrate the load
cell inside the balance. The calibration showed that the

friction of the balance was very small due to the frictionless

flexuraI pivots. The data were adjusted during the data

acquisition process for this small difference.

Results and Discussion

The seven porous plates selected from previous

subsonic tests (Table I) were tested in supersonic flow

(Mach number of 1.9) in the region of no pressure gradient.
The standard deviation of force measurement was kept

below 2 grams for 15 data scans. The test results are

presented herein.
The wall static pressure along the supersonic duct is

shown in Fig. 6. As expected, there were no shocks in the

duct because there was not an abrupt increase in pressure

in the duct. The test plate was located from x = 76.2 to
101.6 cm from the entrance of a transition duct. A fairly

constant pressure gradient region is shown in Fig. 6,

including a case with the highest blowing rate.
A solid stainless steel flat plate without microholes

was first tested and the skin friction coefficient (Cft ,) was

considered as a reference. The repeatability of the facility

is shown in Fig. 7 for the results taken on April 14, 1999

and April 22, 1999. The small difference could be due to

the different level of turbulence on these two days. Based

on Tillman' s report, 7 the uncertainty of drag measurement

is about 5 to I 0 percent, therefore, 2 to 3 percent difference

in measurement for these experiments is considered

acceptable. The total skin friction coefficients obtained

from this test for a plain stainless steel flat plate were

compared with Ludwieg and Tillmann's empirical

formula 1C_and is shown in Fig. 8. Keep in mind that the
total skin friction coefficients from the tests being reported

were the average value based on a 12.36- by 25.06-cm
plate. The momentum thickness was based on the
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downstreamtotalpressurerake,whichwashigherthanthe
momentumthicknessupstreanaatthecenteroftheplate.
However,theresultswerereasonablyclose.

Thetotalskinfrictioncoefficientofaporousflatplate
(C_w0)withoutblowingwasmeasured.Next,theblowing
aircontrolvalvewasopenedtoallowfordifferentblowing
airflow rates.Theskinfrictioncoefficients(Cf)were
measuredattheMachnumberof 1.9.Jerominplotted
C/Cfw0against2F/Cfw0formanyresearchers'data,and
showedratherscattereddata3Manyresearchersalsoused
thesetwoparameters.Thereforethecurrentdatawerefirst
plottedin thesamewayasshowninFig.9. All skins
exceptGAC2054didverywellandfellwithinHefnerand
BushnelI'srange.3TheGAC2054platewasselected
becauseithadaverylowunblownskinfrictioncoefficient
(Ct,,,_)insubsonicflow,buttheskinfrictionreductionwas
notsignificantin supersonicflowbecauseof thelow
porosityof4percentandconical-shapedholes.Adrawback
ofthisfigureisthatonecannottellhowmuchskinfriction
reductionbelowthatofasolidflatplatehasbeenachieved.

Amoremeaningfulwaytopresenttestresultsisgiven
inFig.10,whereskinfrictionratios(C/Ct._)wereplotted
againsttheblowingfraction,F.All sevenporousplates,
whichwereselectedfromprevioussubsonictests,hadavery
lowunblownskinfriction.Thedatashowedthatskinfriction
ratioswereclosetoonewhenFwasequaltozero(i.e.,the
skinfrictionoftheseplateswithoutblowingwasverylow
andclosetoasolidflatplatevalue).Asexpected,theskin
frictionratiowasreducedbelowthatofaflatplatewithvery
lowblowingairandtheskinfrictioncontinuedtoreduce

technique.Theamountof reductionismuchlargerin
supersonicflowthaninsubsonicflow.Theporousplates
(exceptGAC2054),whichworkedverywellinsubsonic
flow,alsoworkedverywell in supersonicflow.The
inclinationandalignmentofholesdidnotseemimportant.
Thistechnologycanbeappliedtomanytypesofflows,
turbulentorlaminar,subsonicorsupersonic.
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Platename

FlatPlate
GAC1897
GAC2054

Porosity,
percent

PN5

5O

Table1.--Specificationsoftestplates.
Hole

diameter,
mm

0.06
0.13

Skin
thickness

0.305
0.23

Aspect
ratio,
L/D

5.08
1.769

PN23 23 0.1651 1.016 6.15
PN4 23 0.1651 1.016 6.15

23 0.1651 1.016 6.15
PN6
PN7

23 1.016
1.0161 23

0.1651
0.1651

6.15
6.15

Description/Material

StainlessSteel
NorthropGrumman'splate,nickel
NorthropGrumman'splate,nickel
Laserdrilledstraightholes,stainlesssteel
5-de_reean_,leholes,sta_ered,stainlesssteel
15-de_reean_leholes,sta_ered,stainlesssteel
5-de_,reean_leholes,aligned,stainlesssteel
15-degreean_leholes,aligned,stainlesssteel

Figurel.--Stainless-steel-laser-drilledmicroholes.

Figure2.--Cross-sectionviewof 15-degreeslanted-laser-drilledholes.

Figure3.--NorthropGrummanGAC1897hourglass-shapedmicroholes.
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